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Abstract. We study the problem of complex dynamics and nonintegrability (integrability) of
cosmological dynamical systems which are given in the Hamiltonian form with indefinite kinetic
energy form T = 1

2g(v, v) where g is a two-dimensional pseudo-Riemannian metric with a
Lorentzian signature (+,−), and v ∈ TxM is a tangent vector at a point x ∈ M of the
configuration space M. We present examples showing the effectiveness of using (a) the direct
method of construction of linear and quadratic first integrals, (b) the Ziglin and Yoshida theorems
concerning nonintegrability of Hamiltonian systems with homogeneous potential functions and
(c) the Morales–Ramis theorem of nonintegrability of Hamiltonian systems with complex potential
functions.

1. Introduction

Relativistic cosmological models are based on the Einstein theory of gravitation. In this
theory gravitation is interpreted as a kind of deformation of spacetime due to the presence of
matter and energy in the space. The Einstein field equations describe the dynamical evolution
of spacetime as well as the motion of matter and physical fields. They constitute a system
of nonlinear partial differential equations. Without some simplifying assumptions they are
intractable by analytical methods. The physically motivated assumption is to postulate a
certain symmetry of spacetime; for example, that it has the topology of R× {space with the
Friedman–Robertson–Walker metric}. Usually, such an idealization allows us to reduce the
Einstein field equation to a system of ordinary differential equations. Therefore it seems to
be natural to adopt the dynamical systems theory to analyse the evolution of spacetime. It
frequently happens that the reduced system is a Hamiltonian one with R

2n (equipped with the
standard symplectic structure) as the phase space. The Hamiltonian function of this system in
many cases is given by the following formula:

H(q, p) := T (q, p) + V (q) (q, p) ∈ R
2n (1)

where the kinetic energy

T (q, p) = gαβpαpβ (α, β = 1, . . . , n)

is not positively defined. This form is close to the well known form of a natural mechanical
system, and thus one can consider direct applications of methods developed for studying the
dynamics of such systems. Several topics seem to be very attractive. For example, it is
important to determine conditions for integrability and separability. Rabinowitz [23, 24] used
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the methods of modern theory of critical points for indefinite functionals in an analysis of
periodic orbits for Hamiltonian systems. These methods can be adopted in our case. One can
also look for effective tools for proving nonintegrability and the presence of chaos in such a
system. However, the fact that system (1) looks similar to a natural mechanical system does
not help much for several reasons of two origins. Of course, to study such a system we can
always apply an arbitrary method for which the particular form of the Hamiltonian function
is irrelevant. However, the cosmological origin of the system imposes certain constraints
of physical origin and this needs some additional nontrivial investigation. For example,
assume that we study the nonintegrability of system (1) and we are able to prove that it is
not integrable (e.g. in the Liouville sense). Usually, for the vacuum cosmological models
only level � = {(q, p) ∈ R

2n|H(q, p) = 0} has a physical interpretation, and a system
nonintegrable in the whole phase space can be integrable in �. Thus, our answer concerning
nonintegrability (or even the nonexistence of one additional first integral) has no significant
physical meaning.

On the other hand, the form of the system (1) suggests reducing its dynamics to the region
of possible motion in the configuration space. For natural mechanical systems there exist
effective methods for study of their dynamics by means of the variational approach. As far
as we know, it is not known whether these methods can be extended in such a way that we
can apply them to study systems with indefinite kinetic energy forms. There exist beautiful
theorems which connect the nonintegrability of a natural mechanical system with the topology
of its configuration space [21]. Thus we can formulate the following problem. Let M be a
pseudo-Riemannian manifold with metric gα,β , and (q, p) be local coordinates on T ∗M. We
consider system (1) on T ∗M. A natural question arises: do restrictions on the topology of M
exist (e.g. on its Euler characteristic) preventing the integrability of system (1) [21]? It would
also be interesting to consider the problems of separability in this context.

Indefinite Hamiltonians appear also in biological models arising in ecology. Rod and
Sleeman [27] show that these Hamiltonian systems have chaos in the sense that there are
nondegenerate homoclinic or heteroclinic solutions connecting hyperbolic periodic orbits.
Then near the transversal intersection of the stable and unstable manifolds of these hyperbolic
periodic orbits one can embed a Smale horseshoe map into the dynamics. This proves directly
that the flow has no real analytic integral independent of the Hamiltonian. As was pointed out
by Rod and Sleeman, the basic tool for this approach was developed by Ziglin in the context
of complex analytic Hamiltonian systems [27].

It should be mention here that Hofer and Toland [17] proved some general theorems
concerning the existence of periodic and homoclinic and heteroclinic orbits for a wide class
of indefinite Hamiltonian systems provided that some assumptions about the behaviour of a
potential function are satisfied. A kinetic energy form is indefinite but not degenerate. They
proved theorems on a certain subset of zero energy (H = 0) which are met in cosmological
applications. The problems in this class arise in nonlinear mechanics and the underlying
motivation arises from modelling nonlinear water waves [29].

The main aim of this paper is to demonstrate how standard methods of investigation
of integrability (nonintegrability) work when applied to studying systems of cosmological
origin. The example of our discussion is a class of two-dimensional Hamiltonian Friedmann–
Robertson–Walker (FRW) models with scalar fields (see table 1). In section 2 the notation and
background for further investigation is given. Section 3 contains the derivation of the FRW
dynamical system. In section 4 we present results obtained by direct construction of integrable
systems. Section 5 contains application of the Ziglin theory and its modification for proving
the nonintegrability of the FRW system.
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Table 1. Examples of simple relativistic dynamical systems of two-dimensional configuration
space. In these simple, low-dimensional systems we find or suspect complex (chaotic) behaviour
of trajectories in the phase space. Two identical trajectories of the system starting at slightly different
positions (initial conditions) diverge in time. Such sensitive dependence on initial conditions is
the main characteristic of chaotic systems and means that they are difficult to predict over long
timescales, practically over the Lapunov characteristic time [30].

Hamilton function Remarks

FRW cosmology coupled to real free massive scalar field
H = 1

2 (−p2
1 + p2

2) + 1
2 (−q2

1 + q2
2 + m2q2

1q
2
2 ) = 0 m = constant [3, 28]

Single scalar field evolving in the idealized de Sitter space

L = e3νt
[

1

2
�̇2 − 1

2
e−2νt (∇�)2 +

1

2
µ2�2 − 1

4
λ�4 − µ2

4λ

]
�(x, y, z, t), scalar field [16]

FRW model with conformally coupled massive, real, self-interacting scalar field

H = 1

2

[
−(p2

1 + kq2
1 ) + (p2

2 + kq2
2 ) + m2q2

1q
2
2 +

λ

2
q4

2 +
�

2
q4

1

]
≡ 0 �, λ,m = constant,

k = 0,±1 [1]

Bianchi IX model with two scale function qA, qB , dust and cosmological constant

H = pApB

4B
− qAp

2
A

8q2
B

+ 2qA − q3
A

2B2
− 2�qAq

2
B − E0 = 0 �, cosmological constant [9]

FRW model with cosmological constant and a conformally coupled scalar field

with the potential V (�) = �2m2 +
λ

4
�4

L = 1

2

{
−ȧ2 + ka2 + ψ̇2 − kψ2 −m2ψ2a2 − λ̄

2
�4 − �̄

2
a4
}

ψ ∝ a�, rescaled scalar field

a, scale factor
m, mass of field

FRW model with cosmological constant and a conformally coupled scalar field

with the potential V (�) = V

(
ψ

a
√
v

)
(flat case with k = 0)

H = − 1

2
p2
a +

1

2
p2
ψ +

�

4
a4 + va4V

(
ψ

a
√
v

)
v = ∫

V

√
g3 dχ dθ dφ

= ∫
V

√
g3 d3 x [5]

2. Simple indefinite Hamiltonian systems

Let us consider a simple mechanical system (SMS) described by a natural Lagrangian

L = 1
2gαβq̇

αq̇β − V (q) α, β = 1, . . . , n (2)

where potential V : M → R is a smooth function (C∞ class) defined on a configuration space
M with qα being local generalized coordinates and q̇α = d

dt q
α their generalized velocities;

gαβ are components of a symmetric metric tensor on M.
The Hamiltonian of an SMS has the form

H = 1
2g

αβpαpβ + V (q) (3)

where pα = gαβq̇
β are canonical momenta. This function is a first integral of motion.

Trajectories of an SMS of prescribed energy E are located in a subset � ⊂ TM of the
phase space defined by the level of constant value of the Hamiltonian

� = {(q, q̇) ∈ TM : gαβq̇
αq̇β = 2(E − V )}. (4)

When the kinetic energy T = 1
2gαβq̇

αq̇β is positive definite the motion of a system takes place
in the domain

D = {q ∈ M : E − V (q) � 0}
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of the configuration space. Generally, this subset has a nonempty boundary

∂D := {q ∈ M : E − V (q) = 0}. (5)

In the case of relativistic systems of general relativity and cosmology it is typical that
the kinetic energy form is indefinite. Therefore such systems are called simple indefinite
mechanical systems (SIMSs). Systems for which the kinetic energy is positive definite we call
simple classical mechanical systems (SCMSs).

There is one main difference between SCMSs and SIMSs. In the last case the whole
accessible configuration space can consist of two regions with positive and negative kinetic
energy separated by set ∂D.

Because of our subsequent cosmological applications we consider dynamical systems with
the Hamiltonian function (3), M = R

n on the level H = 0. Consequently, trajectories of our
system are situated in the domain

� = {(qα, q̇α) ∈ R
2n : gαβq̇

αq̇β = −2V (q)}. (6)

In the tangent space Tq(Rn), q ∈ R
n, we distinguish the three classes of vectors. A vector v is

timelike, spacelike or null if gαβvαvβ < 0, gαβvαvβ > 0 or gαβvαvβ = 0, respectively.
In the configuration space we distinguish the following subsets:

D+ = {q ∈ R
n : V (q) > 0}

D− = {q ∈ R
n : V (q) < 0}

∂D = {q ∈ R
n : V (q) = 0}.

Evidently, ∂D is a closed boundary set of D±. From the equation defining the level� it follows
that the type of a tangent vector v ∈ TqM in the distinguished domains is strictly determined,
namely,

• if v ∈ TqM and q ∈ D+, v is timelike;
• if v ∈ TqM and q ∈ D−, v is spacelike;
• if v ∈ TqM and q ∈ ∂D, v is null.

We can see that a trajectory crossing the boundary changes the domain, say, D+ into D− and
the tangent vector to the trajectory at the q ∈ ∂D is situated on a cone determined by the kinetic
energy form.

The SIMS in a natural way originates from the dynamics of a system in general relativity
and cosmology [6, 7, 10–12]. The theory of these systems is still in statu nascendi.

It seems that it is of great importance to detect and understand complexity in the dynamical
behaviour of such systems. Hamiltonian systems with two degrees of freedom are the simplest
problems of general relativity and cosmology dynamics with nontrivial behaviour. The
equations of motion of such systems are, in general, nonlinear and coupled in such a way
that they are not solvable by standard mathematical techniques. In the generic cases, they are
not Liouville integrable and there exist large regions in phase space where chaotic behaviour
appears. They are, however, of considerable physical interest as they have often been used to
model dynamics of general relativity and cosmology (see table 1). However, there are many
controversies around this subject. These disputes are connected with the numerical character
of the obtained results, and, as we understand, they were caused by some conceptual problems.

The general theorems of Hofer and Toland can be simply adopted to our case. Then under
quite natural hypotheses about the behaviour of the potential function V the existence of of
homoclinic, heteroclinic and periodic orbits on a fixed energy surface can be shown.

To explain the significance of the Hofer–Toland results it is useful to translate the theorems
in such a way that they correspond to this case.
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The quite natural hypotheses are about a kinetic energy form and the behaviour of a
potential function.

(A) The eigenvalues of metric gαβ , (α, β = 1, 2) are λ1 < 0 < λ2, and a quadratic form
gαβy

αyβ is not degenerate.
(B) The potential function V ∈ C∞ and there is a closed, bounded convex set C ⊂ R

n

which is a closure of a component of a set q ∈ R
n : V (q) > 0 and which has the

following property: if q ∈ ∂C and V ′(q) �= 0 and gαβ ∂V
∂qα

∂V
∂qβ

= ‖gradV ‖2 = 0 then
∂2V

∂qβ∂qγ
gαβ ∂V

∂qα
gγ δ ∂V

∂qδ
< 0. Moreover, if q ∈ ∂C and V ′(q) = 0 then D+ \ {q} ⊂ q ∪ C

and V (q) > 0 for all q ∈ Int(C).

It is worth noting that if ∂C is strictly convex then the first part of the above assumption
is automatically satisfied provided that V > 0 in the interior of C. The second part of the
hypothesis only concerns the location of C relative to the set D+ when there are rest points
V ′(q) = 0 on ∂C.

3. Cosmological background

Our cosmological example assumes a Friedman–Robertson–Walker geometry, i.e. a line
element is of the form

ds2 = a2(η)[− dη2 + dχ2 + f 2(χ)(dθ2 + sin2 θ dφ2)]

where

f (χ) =




sin χ 0 � χ � π k = 1

χ 0 � χ < ∞ k = 0

sinh χ 0 � χ < ∞ k = −1

and 0 � φ � 2π , 0 � θ � π and η represents ‘conformal’ time.
The gravitational dynamics is described by the Einstein–Hilbert action

Sg = m2
p

∫
d4x

√−g(R − 2�)

where √−g = a4f 2(χ) sin θ

and the Ricci scalar

R = 6

[
ä

a3
+
k

a2

]
where the dot represents differentiation with respect to η and mp is the Planck mass. For
simplicity we assume that mp = √

1/(12v) with v the conformal volume of the spatial hyper-
space.

The action for a conformally coupled massive real self-interacting scalar field is given by

Sφ = − 1
2

∫
d4x

√−g[∂µ�∂
µ� + 2V (�) + ξR�2]

where ξ = 1
6 for conformal coupling between the field and gravity.

The dynamical equations can be obtained from the variational principle δ(Sg + Sm) = 0.
After dropping the full derivatives with respect to η from the Lagrangian function we finally
obtain

L = 1

2

[
−ȧ2 + ψ̇2 + k(a2 − ψ2)− �̄

2
a4 − 2a4vV

(
ψ

a
√
v

)]
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where ψ = �a
√
v and �̄ = 2

3�.
If we substitute the potential V (�) = 1

2m
2�2 + 1

4 λ̄�
4 and denote λ = λ̄/v we obtain

L = 1

2

[
−ȧ2 + ψ̇2 + k(a2 − ψ2)− �̄

2
a4 −m2ψ2a2 − λ̄

2
ψ4

]
. (7)

4. Direct construction of integrable systems. Integrals linear and quadratic in momenta

There is no systematic way to prove integrability for a planar Hamiltonian system of the
form (3). However, in order to select integrable systems, we use direct approach. Assuming
that a second integral of motion of a prescribed form exists, we can find all potentials which
admit such an integral. For a system with Hamiltonian

H = 1
2 (p

2
x − p2

y) + V (x, y) (8)

this is straightforward and the simplest way to apply a known result. We demonstrate it starting
from finding all the possible potentials which admit the second integral of motion linear in
momenta and having the form

I = A(x, y)px + B(x, y)py. (9)

Note that terms of zero order in the momenta have been omitted so that I has a good time
parity. We have

[I,H ] = Axp
2
x + (Bx − Ay)pxpy − Byp

2
y − (AVx + BVy) = 0 (10)

where subscripts denote partial derivatives and [·, ·] denote Poisson brackets.
Since equation (10) must hold identically the following relations are fulfilled:

Ax = 0 (11)

Bx = Ay (12)

By = 0 (13)

AVx + BVy = 0. (14)

The general solution of system (11)–(13) is

A = αy + γ (15)

B = αx + β (16)

where α, β and γ are constants.
Two cases of different values of α must be considered. First, put α = 0. Then,

equation (14) becomes γVx + βVy = 0 with the solution V = V (βx − γy). After rotation in
hyperbolic space (x, iy) with β = cosh α and γ = sinh α

x → (βx + γy)/(β2 − γ 2) ≡ X

y → (γ x + βy)/(β2 − γ 2) ≡ Y

which is formally equivalent to putting γ = 0, the potential becomes

V = V (X)

and the corresponding integral is

I = pY .

The second case is α �= 0. Without loss of generality we can assume that α = 1 and then
we perform the translation

x → x + β = X

y → y + γ = Y
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which is equivalent to putting β = γ = 0. Equation (14) becomes now

YVX + XVY = 0

with the solution

V = V (X2 − Y 2) = V (r)

where r is a radius in two-dimensional Minkowski space with the metric ds2 = dx2 − dy2,
x = r cosh α, y = r sinh α.

The corresponding integral is

I = YPx + XPy = yẋ − xẏ. (17)

We conclude that the planar potentials which admit a second integral of motion, which
is linear in momenta or can be reduced to this form by means of linear point transformations,
depend on one variable or are central potentials in the Minkowski space. The second integral
of motion is linear or angular momentum, respectively.

Now, the next step is to search for planar potentials V (x, y) which admit an integral
quadratic in momenta

I = Ap2
x + Bpxpy + Cp2

y + D (18)

where A, B, C and D are functions of x and y. Again the terms which are linear in momenta
are omitted in order that I possesses a good time parity.

Darboux [8] obtained a general differential equation for the potential of a simple classical
mechanical system admitting an integral of motion I of the form (18). The whole class of such
integrable potentials was discovered independently by Dorizzi et al [13].

From condition [H, I ] = 0 for Hamiltonian (8) and integral (18) we obtain the following
equations:

Ax = 0 Bx − Ay = 0

Cx − By = 0 Cy = 0
(19)

Dx = 2AVx + BVy
Dy = −BVx − 2CVy.

(20)

The general solution of (19) is

A = αy2 + βy + γ

B = 2αxy + βx + δy + ε
C = αx2 + δx + ξ

(21)

where α, β, γ , δ, ε and ξ are constants while integrability conditions on (20) yield the equation

2(A + C)Vxy + B(Vxx + Vyy) + (2Ay + Bx)Vx + (By + 2Cx)Vy = 0 (22)

where A, B and C are given by (21).
Equation (22) can be treated as a counterpart of the classical Darboux equation. It is a

necessary and sufficient condition for a potential V (x, y) to admit a second integral of motion
which is quadratic in momenta.

The classical cases examined by Darboux and Whittaker correspond to α �= 0. In this
case we may put β = δ = 0 by performing an adequate translation and then, if necessary, we
can perform a rotation in order to achieve ε = 0. We may also put ξ = 0 by subtracting from
I a suitable amount of H . After some manipulations in our case we obtain for α = 1

xy(Vxx + Vyy) + (y2 + x2 + γ )Vxy + 3yVx + 3xVy = 0. (23)

The full analysis of solutions of equation (22) requires consideration of all possible cases for
(a) α �= 0 and (b) α = 0.
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4.1. The case of α �= 0 and γ �= 0

In this case it would be useful to perform the following transformations:

x = uv√
γ

y = −
√
(u2 − γ )(v2 − γ )√

γ
.

Then equation (23) assumes the form

(v2 − u2)(Vuv + 2vVu − 2uVv) = 0

or

((v2 − u2)V )uv = 0

which has the following solutions:

V = f (u)− g(v)

u2 − v2

where f and g are arbitrary functions of their arguments.
The corresponding second integral of motion can be obtained after solution of (2): it takes

the form

I = (ypx + xpy)
2 + γp2

x +
2[v2f (u)− u2g(v)]

u2 − v2
.

4.2. The case of α �= 0 and γ = 0

In this case we transform equation (23) to new variables ξ = x2 − y2 and η = ix/y and it
becomes

ξVξη + Vη = 0

which can immediately be integrated to yield

V = f (ξ) + ξ−1g(η)

where f and g are arbitrary functions.
The second integral of motion has the form

I = (xpy + ypx)
2 + 2g(θ)

where ρ and θ are coordinates in hyperbolic space.
Let us note that for g = 0 the potential V is central in the Minkowski space and I is

merely the angular momentum integral. On the other hand if f = 0 then potential V takes the
form V = ρ−2g(θ), which is the general form of a homogeneous function of degree two.

4.3. The case of α2 = 0 and β2 + δ2 �= 0

In this case by an adequate rotation we may put β = 1 and δ = 0 and after subtracting H from
I we may put ξ = 0. Then by translating we may take γ = ε = 0. Finally equation (22) takes
the form

2yVxy + 3Vx + x(Vxx + Vyy) = 0

and after transformation to the new variables ρ = (x2 −y2)1/2, η = iy andU = ρV the above
equation takes the form

Uρρ − Uηη = 0

which may be solved and we obtain

V = [f (ρ + η) + g(ρ − η)]/ρ.

The corresponding first integral has the form

I = yp2
x + xpxpy − [(ρ − η)f (ρ + η) + (ρ + η)g(ρ − η)]/ρ.
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4.4. The case of α = β = δ = 0

By adding adequate amounts of the first integral H and rotating we may obtain ξ = 0, γ = 1
and ε = 0 and then we obtain from (22)

Vxy = 0

so V = f (x) + g(y) and then I = p2
x + 2f (x).

Therefore, as was demonstrated, all integrable planar potentials V (x, y) which possess a
second integral of motion linear or quadratic in the momenta are known. In the first case the
potentials are simply one dimensional or central while in the second case they belong to the
four classes of solutions of the equation which is the indefinite counterpart of the Darboux
equation. It would be interesting to examine whether these potentials are also separable as
is the case for positive definite Hamiltonians. Note that the Darboux equation for definite
Hamiltonian systems can be obtained from equation (23) after the substitution y = −iȳ and ȳ
satisfies the classical Darboux equation.

5. Nonintegrability of the FRW evolution with scalar fields

In this section we apply Ziglin theory [37, 38] and its extension [22] for proving the
nonintegrability of the FRW dynamical system. This approach is attractive because Ziglin
theory in its general formulation is applicable for a Hamiltonian system with the Hamiltonian
function having an arbitrary form. However, for an effective application of this theory one
needs to determine the monodromy group of (normal) variational equations associated with
a particular solution. This can be done only for very special cases, and, because of this,
several effective formulations of nonintegrability theorems were formulated for systems with
a prescribed form of the Hamiltonian (e.g. [18–20,32–35]). In fact these special formulations
consider natural systems with constant positive definite and diagonal forms of the kinetic
energy. An exception is the model considered in [27].

5.1. Outline of Ziglin theory

The fundamental papers of Ziglin [37, 38] gave the formulation of a very basic theorem
concerning the nonintegrability of analytic Hamiltonian systems. The idea of the Ziglin
approach lies in a deep connection between properties of solutions on a complex time plane and
the existence of the first integral. This idea has its origins in the works of S W Kovalevskaya
and A M Lapunov. Ziglin’s works have found many continuations and many important
applications [2, 4, 14, 15, 18–20, 25, 26, 32–35].

The main difficulty with the application of the Ziglin theorem is the determination of
the monodromy group of NVE. Only in very special cases can we do this analytically (see
cited papers). Yoshida [31–36] developed the Ziglin approach for special cases when the
Hamiltonian of a system has a natural form and the potential is a homogeneous function. In
this case we can find a particular solution in the form of a ‘straight-line solution’ and its normal
variational equations can be transformed to a product of certain copies of hyper-geometric
equations for which the monodromy group is known. This allows us to formulate adequate
theorems in the form of an algorithm. Below we describe this for a case of a Hamiltonian
system with two degrees of freedom.

Consider the Hamiltonian

H = 1
2 (p

2
1 + p2

2) + V (q1, q2) (q1, q2, p1, p2) ∈ C
4 (24)
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where V (q1, q2) is a homogeneous function of degree k, i.e.

V (Cq1, Cq2) = CkV (q1, q2). (25)

In a generic case this system has straight-line solutions of the form

q1 = C1φ(t) q2 = C2φ(t) (26)

where φ(t) is a solution of a nonlinear equation

φ̈ = −φk−1

and (C1, C2) �= (0, 0) are solutions of the following system:

C1 = ∂1V (C1, C2) C2 = ∂2V (C1, C2). (27)

The variational equations take the form[
ξ̈

η̈

]
= −

[
V11 V12

V21 V22

] [
ξ

η

]
(φ(t))k−2

where Vij = ∂i∂jV (C1, C2) for i, j = 1, 2. Since the Hessian of V is symmetric it is
diagonalizable by an orthogonal transformation and the system separates to

ξ̈ = −λ1�
k−2(t)ξ (28)

η̈ = −λ2�
k−2(t)η (29)

where λ1 and λ2 are real eigenvalues of the Hessian. Let us note that this is not true for
indefinite systems where the Hessian is not a symmetric matrix.

It can be shown that the Hessian of V at C = (C1, C2) has the eigenvalue λ1 = k − 1.
Thus, its second eigenvalue is given by λ := λ2 = tr V (C1, C2)− (k − 1), and it is called the
integrability index. Equation (29) is a normal variational equation. It can be transformed to the
hyper-geometric equation. Monodromy matrices of this equation are parametrized by λ and
conditions of the Ziglin theorem put restrictions on the values of λ—simply, we can identify
those values of λ for which our system is not integrable (more precisely, does not possess an
additional meromorphic first integral). To state it accurately let us define

Ik(p) =
[
k

2
p(p + 1)− p,

k

2
p(p + 1) + p + 1

]
p ∈ N (30)

and

Nk = R \
⋃
p∈N

Ik(p). (31)

Then it follows that the Hamiltonian system (24) with homogeneous potential (25) of degree k
is not integrable if the integrability index λ corresponding to a certain straight-line solution (26)
belongs to Nk . Let us note that usually equations (27) have several solutions and thus we have
to check the Yoshida criterion for every one of them.

5.2. Application to the Friedman–Robertson–Walker Hamiltonian system

Let us consider the Friedman–Robertson–Walker (FRW) system defined by the following
Hamiltonian:

H = 1
2 (−p2

1 + p2
2) + V (q1, q2) (32)

where

V (q1, q2) = 1

2

[
−kq2

1 + kq2
2 +

�

2
q4

1 + µq2
1q

2
2 +

λ

4
q4

2

]
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and (k,�, λ, µ) ∈ R
4 are parameters of the problem. This Hamiltonian corresponds to the

Lagrangian function (7) derived in section 3 (we denote here �̄ = � and µ = m2).
It is obvious that there exist two planes

>k = {(q1, q2, p1, p2) ∈ C
4 : pk = 0 ∧ qk = 0} k = 1, 2

which are invariant with respect to flow generated by H . We show that there exists a third
invariant plane given by

>3 = {(q1, q2, p1, p2) ∈ C
4 : q2 = αq1 ∧ p2 = −αp1}

where α ∈ C is a certain constant depending on parameters (�, λ, µ). In fact, from q1 = αq2

and the equations of motion we obtain that the following equation is satisfied:

−∂2V = α∂1V.

This gives

[(µ + �) + (µ + λ)α2]q3
1 = 0

and thus

α2 = −µ + �

µ + λ
.

The FRW system restricted to the plane >k reduces to a system with one degree of freedom
and thus it can be investigated analytically. In particular we can find its nontrivial solutions
lying on these planes. However, for normal variational equations corresponding to these we
are not able to determine the monodromy matrices. The case of k �= 0 is more complicated
and detailed analysis of these equations and a proof of nonintegrability is not presented here.

In what follows we restrict ourselves to the case k = 0. In such a case we have a
Hamiltonian system with a homogeneous potential and for this system we can apply the
Yoshida criterion. To this end let as make the following complex canonical transformation:
(p1, q1) → (ip1,−iq1). Let us note that such a trick gives rise to the application of Yoshida
theorems only if the potential function is homogeneous, of degree 2k. After this transformation
the Hamiltonian function has the form

H = 1
2 (p

2
1 + p2

2) + V (q1, q2) (33)

where

V (q1, q2) = �

4
q4

1 − µ

2
q2

1q
2
2 +

λ

2
q4

2 .

Equation

q = V ′(q) q = (q1, q2)

has the following solutions:

z1 = (±λ−1/2, 0) z2 = (0,±λ−1/2) z3 =
(

±
√

λ + µ

�λ− µ2
,±
√

λ + µ

�λ− µ2

)
.

The integrability indices for these points are

λi = − tr V ′′(zi)− 3 i = 1, 2, 3

and

λ1 = −µ

�
λ2 = −µ

λ
λ3 = λ1λ2 − 2(λ1 + λ2) + 3

1 − λ1λ2
. (34)
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Thus, from the Yoshida criterion it follows that if there is l ∈ {1, 2, 3} such that λl ∈ N4 then
system (32) has no additional meromorphic first integral that is functionally independent of
H .

We show now that complex canonical transformation performed before application of
the Yoshida algorithm is in fact unnecessary. In fact, let us consider the system with the
Hamiltonian

H = 1
2 (−p2

1 + p2
2) + V (q1, q2) (35)

where

V (q1, q2) = �

4
q4

1 +
µ

2
q2

1q
2
2 +

λ

4
q4

2 .

We look for ‘straight-line’ solutions z(t) = (φc1, φc2,−φ̇c1, φ̇c2) where φ = φ(t). As it is
easy to see, z(t) is a solution of the system generated by (35) if and only if c = (c1, c2) is a
solution of the following system:

c1 = −∂1V (c1, c2) c2 = ∂1V (c1, c2) (36)

and φ satisfies the following differential equation:

φ̈ + φ3 = 0.

Equations (36) have three types of solution,

c(1) = (±i�−1/2, 0) c(2) = (0,±λ−1/2)

and

c(3) =
(

±
√

µ− λ

�λ + µ2
,±
√

� + µ

�λ + µ2

)
.

The normal variational equations corresponding to c(1) and c(2) have the forms

η̈ = µ

�
φ(t)2η η̈ = µ

λ
φ(t)2η

respectively. Thus, the corresponding Yoshida integrability coefficients are

λ1 = −µ

�
λ2 = −µ

λ
.

In the case of solution c(3) we can either use a hyperbolic rotation to locate it along one axis
or we can choose noncanonical variables for the variational equations. After that we obtain
the third integrabilty index λ3 of the form (34).

We mention the above constructions for the following reason. In the general settings, in
Ziglin theory the system is considered in a complex phase space and with complex time. If
we are able to prove nonintegrability we show the nonexistence of the complex meromorphic
first integral. Of course, what we need is to prove the nonexistence of the real first integral.
As shown recently by Ziglin [39], this is possible in certain situations when we are able to
control loops generating the monodromy matrices. At the same time it is important to locate
a particular solution in the real part of the phase space.

5.3. Application of the Morales–Ramis theory

Recent results of Morales-Ruiz and Ramis (see book [22]) extend Ziglin theory by connecting
it with the differential Galois theory. Results obtained until now (see the cited book) are not
only important from a theoretical point of view but also give a very strong tool to study applied
problems.
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In this approach we restrict ourselves to proving complete Liouvillian nonintegrability
but instead of using the monodromy group we investigate the differential Galois group of
variational equations. Usually the Galois group is bigger than the monodromy group and
because of this one can achieve the nonintegrability result more easily. Lack of space does
not allow us to present the basic idea of this interesting and very effective approach. Here we
mention only the result of application of this theory to a case considered by Yoshida, i.e. for
natural Hamiltonian systems with a homogeneous potential of degree k. For such a situation
Morales-Ruiz and Ramis proved the following. Let λi be an eigenvalue (different from k−1) of
the Hessian of the potential evaluated at a point which corresponds to a straight-line solution
and k the degree of homogeneity of the potential. Then, if the system is integrable (in the
Liouville sense) (λi, k) (for all straight-line solutions) belongs to a certain fully described
discrete set. (For details see theorem 5.1 in [22].) This gives a stronger result than the Yoshida
criterion because the Yoshida criterion implies that for the same assumptions λi belongs to set⋃

p∈N
Ik(p), but this set has a nonempty interior.

Application of the theorem cited above to the FRW Hamiltonian system (35) gives the
following result. Let us introduce the following three discrete sets:

I1 = {p(2p − 1)|p ∈ Z}
I2 = { 1

8 [−1 + 16( 1
3 + p)2]|p ∈ Z}

I3 = { 1
2 [ 3

4 + 4p(p − 1)]|p ∈ Z}.

Then if {λ1, λ2, λ3} �⊂ I = I1 ∪I2 ∪I3 the system is nonintegrable. Here {λ1, λ2, λ3} are given
by (34).

It is interesting to select those cases when {λ1, λ2, λ3} ⊂ I , i.e. those values of parameters
for which the system can be integrable. Note that λ3 is a symmetric function of λ1 and λ2, thus
we specify such a case that it is enough to know (λ1, λ2). It is easy to observe that if λ1 = 1 or
λ2 = 1 then λ3 = 1. Assume for example that λ2 = λ3 = 1. Then µ = −λ and λ1 = λ/�. If
the system is integrable then λ/� ⊂ I . Although set I is discrete it is difficult to test whether
for λ/� ⊂ I the system is integrable or not.

6. Conclusions

The aim of this paper was to show the need to develop methods which allow us to study
systems with indefinite kinetic energy form. We mention some open problems and, as
an illustration, we consider the simplest two-dimensional dynamical system describing the
evolution of FRW models with a scalar field. The corresponding dynamical system can
be reduced to the Hamiltonian form with indefinite kinetic energy form and polynomial
potential. Physically meaningful trajectories of this system belong to the hyper-surface
determined by the Hamiltonian constraint H = 0. We have presented examples showing the
effectiveness of using (a) the direct method of construction of linear and quadratic first integrals;
(b) the Ziglin and Yoshida theorems concerning nonintegrability of Hamiltonian systems
with homogeneous potential functions; (c) the Morales–Ramis theorem on nonintegrability
of Hamiltonian systems with complex potential functions.

The systems under consideration are analysed in the literature and complex behaviour of
trajectories was demonstrated by different methods. However the main aim of our paper was
devoted to the analysis of nonintegrability of simple indefinite mechanical systems in general.
We think that the first step in this direction has been made.
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